Data Storage Solutions: USB vs. FireWire

Data Storage Solutions What is USB 2.0?
USB 2.0 is the industry standard peripheral connection type for most x86 computers (Windows based). This specification is rated with maximum transfer rate of 480Mb/s (60MB/s). Sustained transfer rate of USB 2.0 depends on many factors including type of device in use, data being transferred, and speed of the computer system. A normal sustained data transfer rate for USB 2.0 ranges from 10-30 MB/s. Only burst data transfers can reach the 480Mb/s rate.

What are the benefits of USB 2.0?

  • USB 2.0 (and earlier 1.1 version ) is “hot swappable,” eliminating the need to reboot or restart your computer when attaching a device.
  • There’s no need for terminators, memory addresses or ID numbers with USB devices.
  • Various sorts of devices can plug into a USB port: external hard drives, digital cameras, printers, Zip drives, SuperDisk drives, floppy drives, mice, keyboards, etc.

What is FireWire?
FireWire is a high-performance connection standard for personal computers and consumer electronics. Originally developed for Apple computers, this connection has been implemented by x86 computers for some time now. FireWire can move large amounts of data between computers and peripheral devices at transfer rates of up to 400 Mb/s (50 MB/s). A new FireWire specification, FireWire 800 (or FireWire B) has entered the computer market with transfer rates of up to 800 Mb/s (100MB/s).

What are the benefits of FireWire?

  • FireWire is “hot swappable,” eliminating the need to reboot or restart your computer when attaching a device.
  • There is no need for terminators, memory addresses of ID numbers with FireWire devices.
  • The FireWire market is growing at a tremendous rate and device types previously supported only by USB are now supported by FireWire. Most devices include Imaging and external storage devices.
  • Though USB 2.0 is rated at a higher throughput speed (480Mb/s related to FireWire’s 400Mb/s), FireWire delivers faster performance for sustained transfer rates on external hard drives. This is because FireWire has lower overhead (less instructions that the CPU has to interpret related to USB 2.0).

Which connection type is better? USB 2.0 or FireWire?

  • If you plan on transferring large amounts of data often, then FireWire would be the best connection type for you. Most Audio/Video programs recommend FireWire over USB 2.0 devices.
  • If you want the versatility of connecting the hard drive to many different computer systems quickly and easily, and transfer rates are not that important, then USB 2.0 would be the preferred connection type.
Read More

The ever-changing storage system technology

Today’s storage technology encompasses all sorts of storage media. These could include WORM systems, tape library systems and virtual tape library systems. Over the past few years, NAS and SAN systems have provided excellent reliability. What is the difference between the two?

• NAS (Network Attached Storage) units are self-contained units that have their own operating system, file system, and manage their attached hard drives. These units come in all sorts of different sizes to fit most needs and operate as file servers.

• SAN (Storage Area Network) units can be massive cabinets – some with 240 hard drives in them! These large 50+ Terabyte storage systems are doing more than just powering up hundreds of drives. These systems are incredibly powerful data warehouses that have versatile software utilities behind them to manage multiple arrays, various storage architecture configurations, and provide constant system monitoring.

For some time, large-scale storage has been out reach of the small business. Serial ATA (SATA) hard disk drive-based SAN systems are becoming a cost-effective way of providing large amounts of storage space. These array units are also becoming main stream for virtual tape backup systems – literally RAID arrays that are presented as tape machines; thereby removing the tape media element completely.

Other storage technologies such as iSCSI, DAS (Direct Attached Storage), Near-Line Storage (data that is attached to removable media), and CAS (Content Attached Storage) are all methods for providing data availability. Storage architects know that just having a ‘backup’ is not enough. In today’s high information environments, a normal nightly incremental or weekly full backup is obsolete in hours or even minutes after creation. In large data warehouse environments, backing up data that constantly changes is not even an option. The only method for those massive systems is to have storage system mirrors – literally identical servers with the exact same storage space.

How does one decide which system is best? Careful analysis of the operation environment is required. Most would say that having no failures at all is the best environment – that is true for users and administrators alike! The harsh truth is that data disasters happen every day despite the implementation of risk mitigation policies and plans.

Read More